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The root mean square radii of the particle orbits are calculated (semi)analytically
for every bound state, using the Dirac equation with a scalar potential US and
fourth component of a vector potential UV in the case of a spherically symmetric
step-function shape with the same radius R for these potentials. In addition, a
(semi)analytic expression of the expectation value of the corresponding potential
energy operator is derived. For the above quantities, expressions of the energy
eigenvalues in terms of the potential parameters are needed and approximate
formulas may be used in certain cases. This study emphasizes the analytic
advantages of the relativistic, spherically symmetric step-function potential model.
Its applicability is discussed in connection with a problem of physical interest,
namely that of the motion of a L particle in hypernuclei.

1. INTRODUCTION

As is very well known, the spherically symmetric step-function potential
well is one of the potentials for which the corresponding eigenvalue problem
in nonrelativistic quantum mechanics can be solved “semianalytically” for
every bound state, that is, the energy eigenfuctions are given analytically in
terms of well-known functions, while for the corresponding eigenvalues
one has to solve numerically a transcendental equation [1–3]. Nevertheless,
approximate analytic expressions also can be derived for the energy eigenval-
ues in certain cases (see, for example, refs. 3–5). Because of its interesting

1 Department of Theoretical Physics, Aristotle University of Thessaloniki, Greece.

455
0020-7748/00/0200-0455$18.00/0 q 2000 Plenum Publishing Corporation



456 Papadopoulos, Koutroulos, and Grypeos

analytic advantages, this potential has been widely used in applications in
spite of its simplified shape.

During recent decades, considerable theoretical work has been done on
the basis of the (generalized) Dirac equation instead of the Schrödinger
equation (see, e.g., refs. 6–9 and references therein). In this equation, both
a scalar potential US(r) and the fourth component of a vector potential UV(r)
appear which are attractive and repulsive, respectively. In the case of step-
function shape, with the same radius R for those spherically symmetric
potentials, a semianalytic treatment is possible for this eigenvalue problem,
too [10–11]. The bound-state energy eigenvalues can be also given by approx-
imate analytic expressions [12].

The present work aims to advance the detailed study of the relativistic,
spherically symmetric step-function potential model. It emphasizes its analytic
advantages for various bound states in estimating quantities of physical inter-
est other than energy eigenvalues. It is shown, by extending previous results
for the ground state [13], that an exact semianalytic expression can be derived
for the root-mean-square radius of the particle orbit (in an energy eigenstate)
^r 2&1/2 for every bound state. Furthermore, an exact semianalytic expression
for the corresponding expectation value of the potential energy operator ^V &
is also derived for every bound state. These expressions and mainly the first
one are very complex. It turns out, however, that an approximate treatment
of the previous results can be made and simpler approximate analytic expres-
sions can be derived in certain cases.

It should be pointed out that even the nonrelativistic expressions of the
root-mean-square radii of the particle orbits and of the expectation values of
the potential energy operator for the various eigenstates (which follow from
the relativistic expressions derived in this paper by taking the nonrelativistic
limit) have not been given before, to our knowledge, with the exception of
those referred to the ground state for ^r 2&1/2.

The arrangement of this paper is as follows: In the next section, the
basic formulas used are exhibited and the derived analytic expressions for
the above-mentioned quantities are given. First, the exact expressions are
given and subsequently the approximate ones. In the final section, numerical
results are given and discussed. To be more specific and close to a problem
of physical interest, the notation used and the numerical results obtained refer
to a L particle in hypernuclei, using reasonable values for the potential
parameters. L-particle binding energies in certain single-particle states are
known experimentally for a number of hypernuclei and some of them have
been used for comparisons with the theoretical results. Finally, a discussion
is made pertaining to the validity of the approximations and the estimate of
the errors in connection with the range of the parameters.
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2. BASIC FORMALISM AND ANALYTIC RESULTS

It is assumed that the average potential between the L particle and the
nucleus is made up of an attractive scalar relativistic single-particle potential
US(r) and a repulsive relativistic single-particle potential UV(r) which is the
fourth component of a vector potential, and that the differential equation
describing the motion of the L particle in hypernuclei is the Dirac equation

[c
›

a ?
›

p 1 bmc2 1 bUS(r) 1 UV(r)]c 5 Ec (1)

where
›

a 5 (a1, a2, a3), and b are the Dirac matrices. E is the total energy
(i.e., E 5 2 BL 1 mc2, BL being the binding energy of the L particle) and
c is the Dirac four-spinor (we are using the formalism outlined in, e.g., ref.
10 and references therein).

Instead of the potentials US(r) and UV (r), we use the potentials

U6(r) 5 US(r) 6 UV (r) (2)

which are both attractive. We consider the case in which U+(r) and U2(r)
are spherically symmetric step-function wells having the same radius R and
depths D+ and D2, respectively, i.e.,

U6(r) 5 2D6[1 2 Q(r 2 R)] (3)

where Q is the unit step function and R 5 r0 A1/3
c . Here Ac is the mass number

of the core system. In such a case the generalized Dirac equation may be
solved “semianalytically” for every bound state. We find it more convenient,
however, to express the large and small component wave functions in terms
of the spherical Bessel jl and the spherical MacDonald functions kl [14]
instead of the spherical Hankel functions. The expressions of G and F can
then be written

G(r) 5 ÑnrH[1 2 Q(r 2 R)] jl(nr) 1 Q(r 2 R)
jl(nR)

kl(n0 R)
kl(n0r)J (4)

F(r) 5 Ñnc"H[1 2 Q(r 2 R)]
1

2BL 1 2mc2 2 D2

[nrjl21(nr) 1 (k 2 l)jl(nr)]

1 Q(r 2 R)
1

2BL 1 2mc2

jl(nR)
kl(n0R)

[2n0rkl21(n0r) 1 (k 2 l)kl(n0r)]J (5)

while the energy eigenvalue equation becomes

2F1 2
D2

2mc2 2 BL
G n0Rkl21(n0R)

kl(n0R)
5

(k 2 l)D2

2mc2 2 BL
1

nRjl21(nR)

jl(nR)
(6)

In these expressions, k 5 6( j 1 1/2), j 5 (l 7 1/2), and the quantities n
and n0 are defined as follows:
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n 5 H2m
"2 (D+ 2 BL)[1 2 (D2 1 BL)(2mc2)21]J1/2

(7)

n0 5 H2m
"2 [BL(1 2 BL(2mc2)21)]J1/2

(8)

The quantum numbers in G, F, BL, and Ñ have been suppressed.
The normalization constant Ñ is calculated using the following normal-

ization condition:

#
`

0

[G2(r) 1 F 2(r)] dr 5 1 (9)

After using the expressions for the radial components G(r) and F(r) of
the wavefunction given above, we find for the normalization constant the
following formula:

Ñ 5
1
n H j2

l (nR)

k2
l (n0R)

R3

2
kl21(n0R)kl11(n0R) 2

R3

2
jl21(nR)jl11(nR)

1
c2"2

(2mc2 2 BL 2 D2)2 F2
n2R3

2
jl22(nR)jl(nR)

1
n2R3

2
j2
l21(nR) 2

(k 2 l)2

2l 1 1
Rj2

l (nR)G
1

c2"2

(2mc2 2 BL)2

j2
l (nR)

k2
l (n0R) Fn2

0R3

2
kl22(n0R)kl(n0R)

2
n2

0R3

2
k2

l21(n0R) 1
(k 2 l)2

2l 1 1
Rk2

l (n0R)GJ21/2

(10)

It is interesting to note that the normalization constant in the nonrelativistic
limit, that is, omitting terms of the order (mc2)21 and higher, is reduced to
the expression

Ñnr 5
1
n

21/2

R3/2 F j2
l (nR)

k2
l (n0R)

kl21(n0R)kl11(n0R) 2 jl21(nR)jl11(nR)G21/2

(11)

given by Sitenko and Tartakovskii [14] for the nonrelativistic square-well case
(where the n and n0 in this formula are considered in the nonrelativistic limit).

The root-mean-square radii of the L-particle orbits in hypernuclei for
every bound state are obtained by means of the expression
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^r 2&1/2 5 H#`

0

r 2[G2(r) 1 F 2(r)] drJ1/2

(12)

since G and F are normalized by means of condition (9). Calculating the
above integrals and using expression (10) for the normalization constant, we
derive the following lengthy formula for ^r 2&1/2:

^r 2&1/2 5
R

31/2F(2l 1 3)(2l 2 1)
2n2R2 F2jl21(nR)jl11(nR) 1

1
2

j2
l (nR)G

1H1
2

[ jl21(nR) 2 jl11(nR)] 2
jl(nR)

nR J2

1
D+ 2 BL

2mc2[1 2 (BL /2mc2) 2 (D2/2mc2)]

3 1(2l 1 1)(2l 2 3)
2n2R2 F2jl22(nR)jl(nR) 1

1
2

j2
l21(nR)G

1H1
2

[ jl22(nR) 2 jl(nR)] 2
jl21(nR)

nR J2

1 j2
l21(nR)

1
3(k 2 l)2

n2R2 [2jl21(nR)jl11 (nR) 1 j2
l (nR)]

1
3(k 2 l)
4n2R2 H(2l 1 1) [ jl22(nR) 2 jl(nR)]2

1 14 2
(2l 2 1)(2l 1 1)

n2R2 2(2l 2 1)j2
l21(nR)J2

1
j2
l (nR)

k2
l (n0R) 1(2l 1 3)(2l 2 1)

2n2
0R2 F2kl21(n0R) kl11(n0R) 1

1
2

k2
l (n0R)G

1H1
2

[kl21(n0R) 1 kl11(n0R)] 1
kl(n0R)

n0R
J2

2
1

BL

2mc2[1 2 (BL /2mc2)]

j2
l (nR)

k2
l (n0R) 1(2l 1 1)(2l 2 3)

2n2
0R2 F2kl22(n0R)kl(n0R)

1
1
2

k2
l21 (n0R)G1H1

2
[kl22(n0R) 1 kl (n0R] 1

kl21 (n0R)

n0R
J2
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2 k2
l21 (n0R) 1

3(k 2 l)2

n2
0R2 [kl21(n0R) kl11(n0R) 2 k2

l (n0R)]

2
3(k 2 l)
4n2

0R2 H(2l 1 1)[kl22(n0R) 1 kl(n0R)]2

2 14 1
(2l 2 1)(2l 1 1)

n2
0 R2 2(2l 2 1)k2

l21(n0R)J2G
1/2

3H j2
l (nR)

k2
l (n0R)

kl21(n0R)kl11(n0R) 2 jl21(nR)jl11(nR)

1
D+ 2 BL

2mc2[1 2 (BL /2mc2) 2 (D2/2mc2)]F2jl22(nR)jl(nR)

1 j2
l21(nR) 2

(k 2 l)2

2l 1 1
2

n2R2 j2
l (nR)G

1
BL

2mc2[1 2 (BL /2mc2)]

j2
l (nR)

k2
l (n0R)Fkl22(n0R)kl(n0R) 2 k2

l21(n0R)

1
(k 2 l)2

2l 1 1

2k2
l (n0R)

n2
0R2 GJ21/2

(13)

In view of the complexity of the above expression, approximate formulas
for the root-mean-square radii of the L-particle orbits in hypernuclei for
every bound state were obtained by using the following asymptotic forms
for the spherical Bessel and MacDonald functions:

jl(x) . 1
x

cosFx 2
1
2

(l 1 1)pG (14a)

kl(x) . 1
x

p
2

e2x (14b)

and ignoring terms which are expected not to be significant, such as terms
involving products of the small quantities

BL

2mc2[1 2 (BL /2mc2)]
,

D+ 2 BL

2mc2[1 2 (BL /2mc2) 2 D2/2mc2)]

etc.
Thus, from (13) one obtains the simpler expression
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^r 2&1/2 . R
31/2 1

1
2n0 31/2 2

1
2n0 31/2Fcos(2nR 2 lp) 1 sin(2nR 2 lp)

n0

nG (15)

If we set in this expression

w 5 arccot
n0

n
(16)

and express R as a function of Ac (R 5 r0A1/3
c ) in the first term, we have

^r 2&1/2 .
r0 A1/3

c

31/2 1
1

2n031/2 2
1

2n031/2

sin(2nR 2 lp 1 w)
sin w

(17)

Observing that the ratio

sin(2nR 2 lp 1 w)
sin w

(18)

can be approximated by a constant CN,l (where N is the principal quantum
number N 5 1, 2, . . .), one obtains the simple approximate formula

^r 2&1/2 . r0

31/2 A1/3
c 1

(1 2 CN,l)

2n031/2 (19)

for the lower bound states. From this formula one can deduce immediately
the almost linear behavior of the curves ^r 2&1/2 versus A1/3

c for the heavier
hypernuclei. (In formula (19), if l 5 0, C1,0 5 21.2; if l 5 1, C1,1 5 21.4, etc.)

Other approximate expressions can also be derived from (15).
In the ground state (l 5 0) all the expressions for the root-mean-square

radii go over to those given in ref. 13.
We have also calculated the potential energy of the L particle in every

bound state. The potential energy operator is of the form

V(r) 5 bUS(r) 1 UV (r) (20)

The expectation value of V(r) for the rectangular potentials considered here is

^V(r)& 5 2D+ #
R

0

G2(r) dr 1 D2 #
R

0

F 2(r) dr (21)

Using expressions (4), (5), and (10), we find for the potential energy the
expression

^V(r)& 5 H2D+[2jl21(nR)jl11(nR) 1 j2
l (nR)]

1 D2

D+ 2 BL

2mc2[1 2 (BL /2mc2) 2 (D2/2mc2)]
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3 F2jl22(nR)jl(nR) 1 j2
l21(nR) 2

(k 2 l)2

2l 1 1
2

n2R2 j2
l (nR)GJ

3 H j2
l (nR)

k2
l (n0R)

kl21(n0R)kl11(n0R) 2 jl21(nR)jl11(nR)

1
D+ 2 BL

2mc2[1 2 (BL /2mc2) 2 (D2/2mc2)]

3 F2jl22(nR)jl(nR) 1 j2
l21(nR) 2

(k 2 l)2

2l 1 1
2

n2R2 j2
l (nR)G

1
BL

2mc2[1 2 (BL /2mc2)]

j2
l (nR)

k2
l (n0R) Fkl22(n0R)kl(n0R) 2 k2

l21(n0R)

1
(k 2 l)2

2l 1 1
2

n2
0R2 k2

l (n0R)GJ21

(22)

In the nonrelativistic limit the above expression goes over to the expression

^V(r)& 5 2D+ 1 HD+ j2
l (nR)Fkl21(n0 R)kl11(n0 R)

k2
l (n0 R)

21GJ
3 H2jl21(nR)jl11(nR) 1 j2

l (nR)
kl21(n0R)kl11(n0R)

k2
l (n0R) J21

(23)

From expression (22) one can obtain also the following simple approximate
expression for the potential energy:

^V(r)& . 2D+ 1 (D+ 1 D2)(D+ 2 BL)(2mc2 2 2BL 2 D2 1 D+)21 (24)

This is expected to hold, however, for very large values of Ac (and the
lowest state).

3. NUMERICAL RESULTS AND COMMENTS

In this section we present our results concerning the root-mean-square
radii of the L-particle orbits in hypernuclei and also its potential energies.
These results were obtained using expressions (13), (15), (22), and the follow-
ing potential parameters:

D2 5 300 MeV (fixed), D+ 5 25.74 MeV, r0 5 1.22 fm

derived from an “overall fit,” that is, a least squares fit to the experimental
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binding energies BL of all states for a number of hypernuclei. In the above
fit the potential parameter D2 was kept fixed to the value D2 5 300 MeV
[11]. Also, for m the L-core reduced mass was used.

The results for the root-mean-square radii of the L-particle orbits in its
ground and excited states are given in Tables I and II. In Table I the results
derived with the exact expression (13) are given for a number of states, while
in Table II those derived with the approximate expression (15) are tabulated
for the lower states.

The results for the potential energy of the L-particle in the ground and
excited states, calculated using the exact expression (22), are given in Table
III. It is seen that the variation of .^V(r)&. with Ac is increasing, as expected.

In Fig. 1 the results given in Table I (i.e., the ^r 2
L&1/2) are plotted versus

A1/3
c . It is interesting to note that the behavior is rather similar to that reported

in ref. 15. The values obtained with the present approach and the above
values of the parameters are larger than the corresponding ones of that
reference. Note also that the almost linear behavior of the curves ^r 2

L&1/2

versus A1/3
c for the heavier hypernuclei is fairly well understood on the basis

of expression (19), which predicts such a behavior for large Ac.
Some additional remarks are in order.
First, it would be of interest to compare the theoretical results with

corresponding experimental values. This can be done only for L-binding
energies in single-particle states for certain hypernuclei for which experimen-
tal BL values Bexp are available. Even in these cases the experimental errors

Table I. Root-Mean-Square Radii ^r 2
L&1/2 of the L-Particle Orbits in the Ground and

Excited States for Various Hypernuclei Obtained Semianalytically Using
Expression (13)a

s1/2 p3/2 p1/2 d5/2 d3/2 f7/2 f5/2

Ac (fm) (fm) (fm) (fm) (fm) (fm) (fm)

8 2.27
10 2.27
11 2.28
12 2.30
15 2.35 3.44 3.96
27 2.61 3.20 3.17
31 2.68 3.26 3.22
39 2.83 3.38 3.33 4.06 4.26
50 3.00 3.54 3.50 4.05 4.02
88 3.46 4.04 4.00 4.47 4.40 4.9 4.86

137 3.90 4.54 4.49 4.97 4.90 5.32 5.24
207 4.39 5.08 5.04 5.54 5.48 5.89 5.81

a The values of the potential parameters are r0 5 1.22 fm, D+ 5 25.74 MeV, D2 5 300 MeV.
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Table II. Root-Mean-Square Radii ^r 2
L&1/2 of the L-Particle Orbits in the Ground and

First Excited States for Various Hypernuclei Obtained Using the Approximate
Expression (15)a

s1/2 p3/2 p1/2

Ac (fm) (fm) (fm)

8 2.38
10 2.40
11 2.42
12 2.44
15 2.51 3.56 4.61
27 2.80 3.12 3.16
31 2.89 3.16 3.18
39 3.05 3.28 3.28
50 3.24 3.44 3.43
88 3.75 3.93 3.92

137 4.23 4.42 4.41
207 4.75 4.96 4.95

a The values of the potential parameters used are the same as in Table I.

are not always very small, because of resolution problems. Unfortunately,
there are no experimental data for the root-mean-square radii for the L-
particle orbits. For that reason theoretical estimates for these quantities should
be considered rather valuable since there is no other source of information
for them. It should be noted, however, that a comparison can be made between
the calculated values of ^r 2&1/2, ^r 2&1/2(Btheor), and the ^r 2&1/2(Bexp), that is,

Table III. Potential Energies ^V & of the L Particle in the Ground and Excited States for
Various Hypernuclei Obtained Using Expression (22).

s1/2 p3/2 p1/2 d5/2 d3/2 f7/2 f5/2

Ac (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

8 217.44
10 218.82
11 219.32
12 219.75
15 220.70 213.46 211.03
27 222.64 218.66 217.91
31 222.81 219.42 218.81
39 223.26 220.47 220.03 215.89 214.14
50 223.67 221.38 221.07 218.02 217.04
88 224.35 222.87 222.72 220.88 220.47 218.11 217.12

137 224.72 223.65 223.57 222.26 222.03 220.48 219.99
207 224.98 224.18 224.13 223.16 223.02 221.9 221.62

a The values of the parameters are the same as in Table I.
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Fig. 1. Variation of the ^r 2
L&1/2 with A1/3

c for the ground and first excited states of L hypernuclei.

between the root-mean-square radii obtained by using for BL[which enters
in the analytic expression (13) either explicitly or through n and n0—see
expressions (7) and (8)] the theoretical values Btheor or the experimental
binding energy values Bexp. We concentrate here on L in its ground state;
the relevant results are displayed in Table IV. It is seen that the agreement
between Btheor and Bexp and between ^r 2&1/2(Btheor) and ^r 2&1/2 (Bexp) is usually

Table IV. Comparison of 1s L-Particle Binding Energies and Root-Mean-Square Radii
of Its Orbit for Various Hypernucleia

Ac Hypernucleus Btheor
1s Bexp

1s ^r 2&1/2
1s (Btheor) ^r 2&1/2

1s (Bexp)

8 9
LBe 8.36 6.49 6 0.68 2.27 2.29 6 0.02

10 11
L B 10.10 10.1 6 0.1 2.27 2.27 6 0.00

11 12
L C 10.81 10.75 6 0.1 2.28 2.28 6 0.00

12 13
L C 11.43 11.69 6 0.1 2.30 2.30 6 0.00

15 16
L O 12.94 12.5 6 0.35 2.35 2.33 6 0.02

27 28
L Si 16.31 16.0 6 0.29 2.61 2.57 6 0.03

31 32
L S 16.98 17.5 6 0.5 2.68 2.74 6 0.05

39 40
L Ca 18.00 18.7 6 1.1 2.83 2.92 6 0.15

50 51
L V 18.99 19.9 6 1.0 3.00 3.15 6 0.17

88 89
L Y 20.82 22.1 6 1.6 3.46 3.83 6 0.43

a See text for notation.
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Table V. Exact and Approximate Values of ^r 2&1/2 /R.s1/2
and Their Differences for Various

Values of s21 (See Text)

^r 2&1/2/R.s1/2 Percentage
s21 Exact Approximate Difference difference

2.38 1.05 1.07 0.02 1.9
2.50 0.98 1.01 0.03 3.1
2.63 0.93 0.97 0.04 4.3
2.77 0.88 0.93 0.05 5.7
3.02 0.82 0.87 0.05 6.1
3.13 0.80 0.85 0.05 6.3
3.24 0.79 0.84 0.05 6.4
3.52 0.75 0.80 0.05 6.7
4.35 0.69 0.74 0.05 7.2
4.57 0.68 0.73 0.05 7.4
4.95 0.66 0.71 0.05 7.6
5.40 0.65 0.70 0.05 7.7
6.55 0.62 0.67 0.05 8.1
7.61 0.61 0.66 0.05 8.2
8.74 0.60 0.65 0.05 8.3

10.0 0.59 0.64 0.05 8.5
12.50 0.58 0.63 0.05 8.6
16.67 0.56 0.61 0.05 8.9
25.00 0.55 0.60 0.05 9.0

fairly satisfactory. Similar conclusions may be drawn for L-excited states
such as the p, d, f ones.

Finally, it would be of interest to discuss also the validity of the approxi-
mations in connection with the range of parameters. Due, however, to the
existence of four parameters in the model, namely the mass m, the two
potential depths D+, D2, and the common potential radius R, such a discussion
would be rather complicated. It seems advisable, therefore, to consider for
this discussion the nonrelativistic limit, which leads to a useful simplification.
This should be adequate as long as the relativistic effects are sufficiently
small, which is often the case. In that limit, one can see from expressions
(6), (13), and (15) that the corresponding dimensionless quantities BL/D+ and
^r 2&1/2/R depend only on a single (dimensionless) parameter s21 5 (2mD+R2/
"2)1/2. We can therefore estimate the errors made in calculating ^r 2&1/2/R
through the approximate expression (15) instead of the corresponding exact
one, by calculating the percentage differences. The results of Table V show
the corresponding values of ^r 2&1/2/R (using for BL in (15) expression (25)
of ref. 12) and the percentage differences for various values of s21 considering
the 1s state. It is seen that these differences are of the order of 2–9% for a
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Fig. 2. Variation of ^r 2&1/2/R for the 1s state with s21 (see text). The exact results are given
by the solid line and the approximate ones by the dashed line.

rather wide range of s21, namely, 2.38 # s21 # 25.0. These results are also
depicted in Fig. 2.
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